## Numerical Mathematics 2, test 1 December 8, 2022

Duration: 1 hour and 30 minutes
In front of the questions one finds the points. The sum of the points plus 1 gives the end mark of the test.

1. Consider the linear problem

$$
\left[\begin{array}{cc}
10^{-20} & 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

We consider this problem on a computer which uses a unit round-off error of 1e-16.
(a) $[0.2]$ Determine the condition number of the matrix in the infinity norm.
(b) [1.0] Give the solution if we use Gaussian elimination without pivoting.
(c) [1.0] Give the solution if we use Gaussian elimination with partial pivoting and scaling.
(d) [0.3] Which of the two approaches gives the correct approximate solution and why?
(e) Let $A=L U$.
i. [0.4] Proof that $\kappa(A) \leq \kappa(L) \kappa(U)$ where $\kappa(A)$ denotes the condition number of $A$.
ii. [0.5] Specify the $L$ 's and $U$ 's associated to parts b and c and determine their respective condition numbers. For which case $\kappa(L) \kappa(U)$ gets closest to $\kappa(A)$. Why is it relevant that $\kappa(L) \kappa(U) \approx \kappa(A)$ ?
2. Consider the graph of a symmetric matrix $A$ depicted below.

(a) [0.4] Make a sketch of the associated matrix (with * if element in matrix is non-zero)
(b) [1.2] Determine the minimum degree ordering and sketch the matrix after reordering. Also motivate your choices.
(c) $[0.8]$ Sketch the $L$ factor of Gaussian elimination without pivoting of the matrix in the previous part.
3. Consider a system $A x=b$ of the form

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(a) $[0.2]$ Show that this linear problem does not have a solution.
(b) $[0.8]$ Show that the singular values of any symmetric $A$ are equal to the absolute values of the eigenvalues of $A$.
(c) [1.2] Compute the SVD factorization of the matrix of our problem.
(d) [1.0] Compute the pseudo inverse of $A$ using the SVD. and use it to compute an approximate solution of the above system $A x=b$.

